An Alternative to Fiber Optics
Today's leading edge serial interconnect standards exert some very demanding requirements on a copper link's ability to deliver usable output waveforms while jumping the hurdles of jitter, ISI, attenuation, reflections, and crosstalk. And as every interconnect standard travels down its own roadmap to higher and higher bandwidths, the signal integrity hurdles get higher and higher. Faster rise times mean more crosstalk, EMI, and signal attenuation. The result? More errors, system latency, and shorter cables.

As your design attempts the jump, high cable skew can trip you up.

Managing Your Skew Budget
In the past, circuit designers used to have the luxury of copper cable links with fat skew budgets. But today's faster speeds mean less time for everything that has to occur between clocking events. That means that cable skew — once virtually ignored by designers — has become a critical factor in skew budgets. The less time that can be budgeted to cable means more time available for set-up, hold, ISI, and jitter. The trick is overcoming two major types of cable skew:

Delay skew is created when multiple signals are transmitted simultaneously, but arrive at the cable ends at different times.

Cables made with pairs, such as twisted or parallel, have two kinds of delay skew—within-pair and pair-to-pair.

Within-pair (or wire to wire) skew causes rise time degradation and thus attenuates the signal, particularly at GHz frequencies. In addition, a high within-pair skew will produce uncancelled currents traveling on the pair shield, creating EMI, crosstalk, and further degrading the signal to the point of possible system failure. If within-pair skew can be reduced, so can the accompanying attenuation, EMI, and crosstalk.

Pair-to-pair skew is the difference between fastest and slowest pairs in the cable. Its control becomes critical when a link uses a separate clock line (e.g. Channel Link) which must be synchronized accurately in relation to the data lines in order to correctly sample the data. Serial links have clocks embedded with the data stream and thus do not have tight restrictions on pair-to-pair skew.

Amplitude skew (imbalance) occurs when two equal but opposite signals are transmitted into a pair, but unequal amplitude results on either leg at the receiver, due to attenuation effects on the leg. The longer the cable, the more problems will be encountered with sampling accuracy.
In response to the growing skew budget crunch, we’ve developed a new concept in individually shielded differential pair cabling for use in high data rate applications.

Called SKEWCLEAR, this cabling features an innovative manufacturing process that effectively corrects the causes of cable skew that creep into cables in the first place. The design consists of individually shielded multiple parallel pairs (Fig. A) which are laminated in a planar configuration to assure equal pair lengths. The pair shields consist of heat sealed spirally wrapped aluminum mylar, with an additional heat seal of .0005" clear mylar to ensure the shield does not unravel. The flat cable pairs are bonded and then slit in a staggered fashion (Fig. B), enabling the cable to be flexibly cabled into a round format (Fig. C), yet keeping the same pair-to-pair physical length of a flat cable construction. Standard impedances are 100, 110, 120, and 150 ohms.

As a result of this unique manufacturing approach, skew values can be consistently reduced to within 2 picoseconds/ft within-pair and 10 picoseconds/ft pair-to-pair, depending on pair count and dielectrics. Compared with industry-standard twisted pair construction, this is a 200% to 400% improvement in skew control. Other cable technologies, if manufactured with extreme care, often can yield very good skew performance. SKEWCLEAR, by design, makes tight skew control consistent, repeatable, and easy.
Features

- 31-22 awg flat and round constructions
- 1-50 pair counts
- Rugged polyolefin resists deformation, crushing, and electrical variations
- Precision wrapped heat sealed aluminum/mylar, with additional .0005" heat sealed clear mylar on each pair.
- Parallel pairs eliminate twist length variation and resulting dielectric deformation
- Unique staggered slit between pairs enables cable to be formed into flexible round format with pair-to-pair uniformity of flat cable
- Parallel pairs provide easy fixturing and mass stripping for labor savings
- Optional plenum and zero halogen constructions
- Double overall shielding for maximum EMI/RFI protection
- CL2/FT4 listed

To Drain or Not to Drain

Drain wires in each pair present many design trade-offs in skew, termination ease, and cost. Spectra-Strip applies drains either as “center” or “side” as shown below.

For a more complete discussion of these trade-offs contact Spectra-Strip Engineering.

Drain Options

Center Drain Side Drain

(Better Balance) (More TD and Amplitude Skew)

Connector Compatibility

SKEWCLEAR can be terminated readily to all industry-standard I/O connectors, including MicroGiga CN™, HSSDC2™, SCSI, VHDCI, D sub, 2mm, MDR™, LFH™, and METRAL™. Spectra-Strip can recommend a manufacturer of precision cable terminations in your area.

MicroGiga CN™ is a trademark of Fujitsu, HSSDC2™ is a trademark of Tyco Electronics, MDR™ is a trademark of 3M, and LFH™ is a trademark of Molex.
High volume cable assembly manufacturing of a gigabit copper interconnect demands the following:

- Lot-to-lot consistent electrical performance
- Very low in-pair skew to maximize eye opening and control EMI
- Tight impedance control... minimal reflections
- Very close pair shield termination management (< .100" on all pairs) to minimize crosstalk and reflections at the connector.
- Low applied cost
- A cable / connector scheme that satisfies these criteria.

Do the above on all pairs all the time.

Our SKEWCLEAR Plus cable technology is the ONLY ONE that allows you to CONSISTENTLY strip all pairs at the same strip length.

Amphenol Spectra-Strip has developed a unique processing technique that eliminates the process control variables created by traditional concentric cabling techniques.

SKEWCLEAR Plus provides precision differential pairs laid parallel with individual shields for crosstalk isolation. Pairs are then laminated in short, 1.5" programmed “prefixture” sections to form a planar (flat) configuration suitable for mass preparation and robotic termination. The resulting planar shielded pair groups are then cabled, shielded and jacketed per industry standard. The laminated prefixture sections are programmable, thus permitting many options for termination zones. These zones are readily identifiable by external jacket marking.

Benefits (It’s all in the process)

- Significant labor saving mass stripping and pre-fixturing of all pairs on each cable end. Traditional cable requires individual identification and separation of pairs, untwisting, and individual wire prepping. Quad designs in particular, require a difficult cross-over in the termination.

- Programmed pair lamination sections allows the ability to pre-align the stripped wires directly to the connector or paddleboard footprint, thus ‘error proofing’ the point-to-point termination while providing a means for rapid and volume processing. Traditional cable requires significant handling of the product to individually identify pairs, with subsequent manual fixturing and associated error potential.

- Allows for consistent control of pair shield strip lengths, ensuring close shield-to-termination processing thus providing minimal crosstalk and reflection at the termination. Traditional cable requires untwisting of individual pairs and the subsequent manipulation to minimize shield separation from pair, thus creating the additional potential of assembly electrical problems.
Durability and Consistency

SKEWCLEAR cable is tough: As part of the SKEWCLEAR qualification process, a 5 meter length of 22 pair 30 awg 100 ohm cable was repeatedly flexed over a 4.0 inch diameter mandrel for 250, 500, and 1000 cycles. The sample was checked for within-pair skew and differential impedance before and after the flex test. Results are shown on Tables A and B.

![Impedance Measurements](image1)

Table A

![Skew Measurements](image2)

Table B

100 Ohm Skewclear

Attenuation Plot dB/meter

![Attenuation Plot](image3)

Near-End Crosstalk

![Near-End Crosstalk](image4)
SKEWCLEAR® Applications

Computer
- High bandwidth LVDS signaling
- InfiniBand™ 2, 8, 12, 24 pair
- Double Speed Fibre Channel
- HIPPI 6400 (Super HIPPI)
- Low skew multi coax interconnections
- Digital Video Display
- Serial ATA

Telecom
- SONET/SDH high speed copper links
- Rack-to-rack and frame-to-frame multiplexed copper links, e.g. National Semiconductor LVDS Channel Link™
- InfiniBand™ 2, 8, 12, 24 pair
- Flexible cabled backplanes
- 10 Gb Ethernet
- Alternative to Fiberoptics

Cabled 2.5Gb Backplane

High Speed Internal LVDS

Serial ATA

Double Speed Fibre Channel

InfiniBand 12 X
Features/Benefits
• 100± 5 Ohms differential impedance
• Up to 50 pairs
• Round or flat options
• Non drain wire option available
• High crosstalk isolation
• Extremely tight and consistent skew control
• Stable impedance

Applications
Computing
• Flat Panel Displays
• Monitor Link
• SCI processor interconnect
• Printer engine links
• System clustering
• Multimedia peripheral links

Telecom/Data
• Switches
• Add/drop multiplexers
• Hubs
• Routers
• Digital copiers
• Box to box and rack to rack

Companies such as National Semiconductor, Texas Instruments, and Silicon Image are marketing LVDS transceiver chipsets that enable low cost copper gigabit interconnects in telecommunications, digital video, and data communications applications. They are designed to provide greater bandwidth than traditional point to point technologies (such as RS232 or RS422). These chipsets typically take 21, 28 or 48 bit CMOS / TTL parallel data and serialize them onto 3, 4 or 8 data pairs. An additional pair acts as a clock to synchronize and sample the data. Depending on clock frequency and bit width, a total data throughput of 5.38 Gigabits / second can be achieved over 8 data pairs. Because of the high data pair frequency and distances involved, precision skew control is critical for accurate clocking of the data and control of EMI.
High Speed LVDS

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>AWG</th>
<th>Pair Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>165-3999-938</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>165-3999-939</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>165-3999-940</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>165-3999-941</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>165-3999-942</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>165-3999-943</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>165-3999-944</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>165-3999-945</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>165-3999-946</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>165-3999-947</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>165-3999-948</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>165-3999-949</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>165-3999-950</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>165-3999-951</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>165-3999-952</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>165-3999-953</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>165-2899-941</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>165-2899-942</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>165-2899-943</td>
<td>28</td>
<td>6</td>
</tr>
<tr>
<td>165-2899-944</td>
<td>28</td>
<td>9</td>
</tr>
<tr>
<td>165-2899-945</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>165-2899-946</td>
<td>28</td>
<td>12</td>
</tr>
<tr>
<td>165-2899-947</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>165-2899-948</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>165-2899-949</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>165-2899-950</td>
<td>28</td>
<td>25</td>
</tr>
<tr>
<td>165-2899-951</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>165-2899-952</td>
<td>28</td>
<td>35</td>
</tr>
</tbody>
</table>

28 AWG 100 Ohm Output Eye Pattern

<table>
<thead>
<tr>
<th>Input</th>
<th>PRBS</th>
<th>Data Rate</th>
<th>Eye Height</th>
<th>Jitter at Crossing</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>350mv pp</td>
<td>2^-15-1</td>
<td>622Mb</td>
<td>140mv</td>
<td>285 ps (19%)</td>
<td>11 meters</td>
</tr>
</tbody>
</table>
InfiniBand is a developing high bandwidth I/O architecture specification that combines the best of the industry’s serial and parallel approaches to the scalable bandwidth demands of the computer and telecom industry.

The InfiniBand specification provides for three data rates over high performance copper links: 1X (500 MBytes/s) 4X (2 GBytes/s), and 12 X (6 GBytes/s). The pair signaling rate is 2.5Gbits (1.25GHz).

Spectra-Strip supports all speeds of InfiniBand with its family of SKEWCLEAR, precision shielded parallel pair cables. All products are UL CL2 / CSA FT4 listed.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>AWG</th>
<th>No. Pairs</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>160-2899-993</td>
<td>28</td>
<td>2</td>
<td>1X</td>
</tr>
<tr>
<td>160-2699-997</td>
<td>26</td>
<td>2</td>
<td>1X</td>
</tr>
<tr>
<td>160-2499-997</td>
<td>24</td>
<td>2</td>
<td>1X</td>
</tr>
<tr>
<td>160-2299-996</td>
<td>22</td>
<td>2</td>
<td>1X</td>
</tr>
<tr>
<td>166-2899-997</td>
<td>28</td>
<td>8</td>
<td>4X</td>
</tr>
<tr>
<td>166-2699-997</td>
<td>26</td>
<td>8</td>
<td>4X</td>
</tr>
<tr>
<td>166-2499-998</td>
<td>24</td>
<td>8</td>
<td>4X</td>
</tr>
<tr>
<td>166-2899-992</td>
<td>28</td>
<td>12</td>
<td>12X (2 cables)</td>
</tr>
<tr>
<td>166-2699-991</td>
<td>26</td>
<td>12</td>
<td>12X (2 cables)</td>
</tr>
<tr>
<td>166-2499-996</td>
<td>24</td>
<td>12</td>
<td>12X (2 cables)</td>
</tr>
<tr>
<td>166-2899-993</td>
<td>28</td>
<td>24</td>
<td>12X</td>
</tr>
<tr>
<td>166-2699-992</td>
<td>26</td>
<td>24</td>
<td>12X</td>
</tr>
<tr>
<td>166-2499-992</td>
<td>24</td>
<td>24</td>
<td>12X</td>
</tr>
</tbody>
</table>
For emerging serial copper applications such as **Double Speed Fibre Channel**, traditional quad cables are found to be lacking in crosstalk and EMI performance at multi-gigabit transfer rates. Since pairs in quad constructions are not individually shielded, a significant impedance discontinuity and source of crosstalk occurs at the connector where pairs are separated for termination. Spectra-Strip has addressed this problem with its SKEWCLEAR line of dual shielded serial cables. The cable line consists of 2, individually shielded 150 ohm parallel pairs, extruded with foam polyolefin dielectric. Pairs are available from 30 awg through 22 awg for both internal and external applications.

Key advantages of the SKEWCLEAR construction are extremely low TD and amplitude skew, plus superior crosstalk performance in bidirectional applications. Crosstalk at the connector is minimized due to the heat sealed pair shields, which can be brought very close to the contacts. In addition, the grounding of pair shields to the overall frame ground cable shields throughout the cable length yields better EMI performance than quad type cables.

For emerging serial copper applications such as **Serial ATA** is a developing PC disk drive serial interconnect standard that is intended to replace Ultra ATA / 100’s 80 conductor ribbon cable interface with a much smaller, higher data rate cable. The developing standard is roadmapped to support 1.5, 3.0, and 6.0Gb data transfer rates over 1 meter copper cabling. Spectra-Strip is supporting the developing Serial ATA standard with a family of low skew, 100 ohm differential twinaxial constructions.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>AWG</th>
<th>No. Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>150-2699-947</td>
<td>26</td>
<td>2</td>
</tr>
</tbody>
</table>

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>AWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>160-3099-998</td>
<td>30 solid silver</td>
</tr>
<tr>
<td>160-2899-998</td>
<td>28 solid silver</td>
</tr>
<tr>
<td>160-2699-998</td>
<td>26 solid silver</td>
</tr>
<tr>
<td>160-2499-998</td>
<td>24 solid silver</td>
</tr>
<tr>
<td>160-2299-998</td>
<td>22 solid silver</td>
</tr>
</tbody>
</table>

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>AWG</th>
<th>No. Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>150-2699-947</td>
<td>26</td>
<td>2</td>
</tr>
</tbody>
</table>
Main Sales Offices

Americas
Amphenol Spectra-Strip Operations
Hamden, CT, U.S.A.
Phone: +1-203-281-3200
E-mail: sales@spectra-strip.com

Amphenol Canada Corp.
Scarborough, Ontario, Canada
Phone: +1-416-291-4401
E-mail: mattl@amphenolcanada.com

Amphenol Corp. Argentina
Buenos Aires, Argentina
Phone: +54-11-4341-4565
E-mail: amphenol_argentina@compuserve.com

Amphenol do Brasil LTDA.
Sao Paulo - SP , Brazil
Phone: +55-11-5185-2881
E-mail: amphenol@amphenol.com.br

Amphenol Corp. Mexico
CP 11560 Mexico D.F., Mexico
Phone: +52-5-254-7283
E-mail: amphenol_mex@compuserve.com

Europe / UK
Spectra-Strip Ltd.
Romsey Hampshire
Great Britain
Phone: +44-1794-517-575
E-mail: sales@spectra-strip.com

Amphenol European Sales Operations
Houten, The Netherlands
Phone: +31-30-6358-000
E-mail: info@amphenol-nl.com

Argenta Elektronik GmbH
Solingen, Germany
Phone: +49-212-258130
E-mail:info@argenta-elektronik.com

Amphenol Socapex S.A.
Dole Cedex, France
Phone: +33-3-8462-9400
E-mail: webmaster@amphenol-socapex.com

Asia & R.O.W.
Amphenol Japan, K.K.
Chiyoda-ku, Tokyo, Japan
Phone: +81-3-3263-5611
E-mail: info@amphenol.co.jp

Amphenol East Asia Ltd.
Kowloon, Hong Kong
Phone: +852-2699-2663
E-mail: info@amphenol.com.hk

Amphenol Taiwan Corp.
Taoyuan, Taiwan
Phone: +886-3-379-5677
E-mail: info@amphenol.com.tw

Guangzhou Amphenol Electronics Communications
Guangzhou, China
Phone: +86-20-3869-8808
E-mail: infogec@gecamphenol.com

Amphetronix Limited
Bhosari Industrial Area
Pune, India
Phone: +91-20-7120363
E-mail: sales@amphenol-in.com

Amphenol Australia Ltd.
Keysborough Vic, Australia
Phone: +61-3-8796-8888
E-mail: info@amphenol.com.au

Amphenol South Africa
Sandown Village, South Africa
Phone: +27-11-305-9574
E-mail: amphenol_africa@csi.com

Bar-Tec Ltd.
Kfar-Sava, Israel
Phone: 972-997-4097
E-mail: Ina@tel-ad.co.il